
 1

Lecture Notes on Parallel Computation

Stefan Boeriu, Kai-Ping Wang and John C. Bruch Jr.

Office of Information Technology and
Department of Mechanical and Environmental Engineering

University of California
Santa Barbara, CA

 CONTENTS 1

1. INTRODUCTION 4

1.1 What is parallel computation? 4
1.2 Why use parallel computation? 4
1.3 Performance limits of parallel programs 4
1.4 Top 500 Supercomputers 4

2. PARALLEL SYSTEMS 6

 2.1 Memory Distribution 6
 2.1.1 Distributed Memory 6
 2.1.2 Shared Memory 6
 2.1.2 Hybrid Memory 6

2.1.4 Comparison 6

 2.2 Instruction 7
 2.2.1 MIMD (Multi-Instruction Multi-Data) 7
 2.2.2 SIMD (Single-Instruction Multi-Data) 7
 2.2.3 MISD (Multi-Instruction Single-data) 7
 2.2.4 SISD (Single-Instruction Single-Data) 7

 2.3 Processes and Granularity 8
 2.3.1 Fine-grain 8
 2.3.2 Medium-grain 8
 2.3.3 Course-grain 8

 2.4 Connection Topology 9
 2.4.1 Static Interconnects 9

� Line/Ring 9
� Mesh 10
� Torus 11
� Tree 12
� Hypercube 13

 2

 2.4.2 Dynamic Interconnects 14

� Bus-based 14
� Cross bar 15
� Multistage switches 16

 2.5 Hardware Specifics – Examples 17
 2.5.1 IBM SP2 17
 2.5.2 IBM Blue Horizon 18
 2.5.3 Sun HPC 18
 2.5.4 Cray T3E 19
 2.5.5 SGI O2K 20
 2.5.6 Cluster of workstations 21

3. PARALLEL PROGRAMMING MODELS 22

3.1 Implicit Parallelism 22
 3.1.1 Parallelizing Compilers 22
3.2 Explicit Parallelism 22

3.2.1 Data Parallel 22
 Fortran90 23
 HPF (High Performance Fortran) 23

 3.2.2 Message Passing 23
 PV (Parallel Virtual machine) 23
 MPI (Message Passing Interface) 24
 3.2.3 Shared variable 24
 Power C, F 24
 OpenMP 25

4. TOPICS IN PARALLEL COMPUTATION 25

4.1 Types of parallelism - two extremes 25
 4.1.1 Data parallel 25
 4.1.2 Task parallel 25

 4.2 Programming Methodologies 26

 4.3 Computation Domain Decomposition and Load Balancing 27
 4.3.1 Domain Decomposition 27
 4.3.2 Load Balancing 27
 4.3.3 Overlapping Subdomains and Non-Overlapping Subdomains 27

4.3.3.1 Overlapping subdomains 27
4.3.3.2 Non-overlapping subdomains 28

 4.3.4 Domain Decomposition for Numerical Analysis 29

 3

 4.4 Numerical Solution Methods 32
 4.4.1 Iterative Solution Methods 32
 4.4.1.1 Parallel SOR (Successive Over-Relaxation)

 Methods 32
 4.4.1.1.1 Parallel SOR Iterative Algorithms for
 the Finite Difference Method 32
 4.4.1.1.2 Parallel SOR Iterative Algorithms for
 the Finite Element Method 38
 4.4.1.2 Conjugate Gradient Method 40
 4.4.1.2.1 Conjugate Iterative Procedure 40
 4.4.1.3 Multigrid Method 41
 4.4.1.3.1 First Strategy 41
 4.4.1.3.2 Second Strategy (course grid correction) 42
 4.4.2 Direct Solution Method 43
 4.4.2.1 Gauss Elimination Method 43
 4.4.2.1.1 Gauss elimination procedure 43

5. REFERENCES 44

 4

1. Introduction

1.1 What is Parallel Computation?

 Computations that use multi-processor computers and/or several
independent computers interconnected in some way, working together
on a common task.

• Examples: CRAY T3E, IBM-SP, SGI-3K, Cluster of
Workstations.

1.2 Why use Parallel Computation?

• Computing power (speed, memory)
• Cost/Performance
• Scalability
• Tackle intractable problems

1.3 Performance limits of Parallel Programs

• Available Parallelism – Amdahl’s Law
• Load Balance

o some processors work while others wait
• Extra work

o management of parallelism
o redundant computation

• Communication

1.4 Top 500 Supercomputers – Worldwide
• Listing of the 500 most powerful computers in the World,

available from www.top500.org.
• Rmax [Gflops/s for the largest problem] - from LINPACK

MPP [Massively Parallel Processors]
• Updated twice a year.
• Top 13 presented in Table 1.4.

 5

Table 1.4

TOP 10 - June 2003

Rank Manufacturer Computer Rmax Installation Site Country Year #
Proc

1 NEC Earth-Simulator 35860
Earth Simulator
Center
Japan/2002

Japan 2002 5120

2 Hewlett-
Packard

ASCI Q -
AlphaServer SC
ES45/1.25 GHz

13880
Los Alamos
National
Laboratory

USA 2002 8192

3 Linux
Networx

MCR Linux
Cluster Xeon 2.4
GHz - Quadrics

7634

Lawrence
Livermore
National
Laboratory

USA 2002 2304

4 IBM ASCI White, SP
Power3 375 MHz 7304

Lawrence
Livermore
National
Laboratory

USA 2000 8192

5 IBM SP Power3 375
MHz 16 way 7304 NERSC/LBNL USA 2002 6656

6 IBM
xSeries Cluster
Xeon 2.4 GHz -
Quadrics

6586

Lawrence
Livermore
National
Laboratory

USA 2003 1920

7 Fujitsu
PRIMEPOWER
HPC2500 (1.3
GHz)

5406

National
Aerospace
Laboratory of
Japan

Japan 2002 2304

8 Hewlett-
Packard

rx2600 Itanium2
1 GHz Cluster -
Quadrics

4881
Pacific Northwest
National
Laboratory

USA 2003 1540

9 Hewlett-
Packard

AlphaServer SC
ES45/1 GHz 4463

Pittsburgh
Supercomputing
Center

USA 2001 3016

10 Hewlett-
Packard

AlphaServer SC
ES45/1 GHz 3980

Commissariat a
l'Energie
Atomique (CEA)

France 2001 2560

 6

2. Parallel Systems

 2.1 Memory Distribution

 2.2.1 Distributed Memory
• Each processor in a parallel computer has its own

memory (local memory); no other processor can access
this memory.

• Data can only be shared by message passing
• Examples: Cray T3E, IBM SP2

2.2.2 Shared Memory

• Global memory which can be accessed by all processors
of a parallel computer.

• Data in the global memory can be read/write by any of
the processors.

• Examples: Sun HPC, Cray T90

2.1.3 Hybrid (SMP Cluster)
• A distributed memory parallel system but has a global

memory address space management. Message passing
and data sharing are taken care of by the system.

• Examples: SGI Power Challenge Array

2.1.4 Comparison

• Shared Memory
o Explicit global data structure
o Decomposition of work is independent of data

layout
o Communication is implicit
o Explicit synchronization

� Need to avoid race condition and over
writing

• Message Passing
o Implicit global data structure
o Decomposition of data determines assignment of

work
o Communication is explicit
o Synchronization is implicit

 7

2.2. Instruction
 Flynn’s classification of computer architectures (1966):

 2.2.1 MIMD (Multi-Instruction Multi-data)

• All processors in a parallel computer can execute different
instructions and operate on different data at the same time.

• Parallelism achieved by connecting multiple processors
together

• Shared or distributed memory
• Different programs can be run simultaneously
• Each processor can perform any operation regardless of

what other processors are doing.
• Examples: Cray T90, Cray T3E, IBM-SP2

2.2.2. SIMD (Single-Instruction Multi-Data)

• All processors in a parallel computer execute the same
instructions but operate on different data at the same time.

• Only one program can be run at a time.
• Processors run in synchronous, lockstep function
• Shared or distributed memory
• Less flexible in expressing parallel algorithms, usually

exploiting parallelism on array operations, e.g. F90
• Examples: CM2, MsPar

2.2.3 MISD (Multiple-Instruction Single-Data)

• Special purpose computer

2.2.4 SISD (Single-Instruction Single-Data)
• Serial computer

karuna
Highlight

karuna
Highlight

karuna
Highlight

 8

2.3 Processes and Granularity

On a parallel computer, user applications are executed as processes, tasks or
threads. The traditional definition of process is a program in execution. To
achieve an improvement in speed through the use of parallelism, it is
necessary to divide the computation into tasks or processes that can be
executed simultaneously. The size of a process can be described by its
granularity.

 2.3.1 Fine-grain

• In fine granularity, a process might consist of a few
instructions, or perhaps even one instruction.

2.3.2. Medium-grain

• Medium granularity describes the middle ground between
fine-grain and course grain.

2.3.3 Course-grain

• In course granularity, each process contains a large number
of sequential instructions and takes a substantial time to
execute.

Sometimes granularity is defined as the size of the computation between
communication or synchronization points. Generally, we want to increase
the granularity to reduce the cost of process creation and interprocess
communication, but of course this will likely reduce the number of
concurrent processes and the amount of parallelism. A suitable compromise
has to be made.

In general, we would like to design a parallel program in which it is easy to
vary granularity: i.e. a scalable program design.

karuna
Highlight

 9

2.4 Connection Topology

The best choice would be a fully connected network in which each processor
has a direct link to every other processor. Unfortunately, this type of
network would be very expensive and difficult to scale. Instead, processors
are arranged in some variation of a grid, torus, hypercube, etc. Key issues in
network design are the network bandwidth and the network latency. The
bandwidth is the number of bits that can be transmitted in unit time, given as
bits/sec. The network latency is the time to make a message transfer through
the network.

2.4.1 Static Interconnects

• Consist of point-to-point links between processors
• Can make parallel system expansion easy
• Some processors may be “closer” than others
• Examples: Line/Ring, Mesh/Torus, Tree, Hypercube

 Line/Ring.

o a line consists of a row of processors with connections
limited to the adjacent nodes.

o the line can be formed into a ring structure by connecting
the free ends.

 Fig. 2.4.1.a - Ring

 10

Mesh
o processors are connected in rows and columns in a 2

dimensional mesh
o example: Intel Paragon

Fig. 2.4.1.b – 2D Mesh

 In a mesh network of dimension D, each nonboundary
processor is connected to 2D immediate neighbors.
Connections typically consist of two wires, one in each
direction.

 11

 Torus
This architecture extends from the mesh by having wraparound

connections. The torus is a symmetric topology, whereas a mesh is
not. All added wraparound connections help reduce the torus diameter
and restore the symmetry.

o one-dimensional torus
o two-dimensional torus
o three-dimensional torus
o example: Cray T3E

Fig. 2.4.1.c – 2D Torus

 12

 Tree
o binary tree

� first node is called root
� each node has two links connecting to two

nodes below it as the network fans out from
the root node

� At the first level below the root node, there
are two nodes. At the next level, there are
four nodes, and at the j-th level below the
root node there are 2j nodes.

o fat tree
� The number of links is progressively

increased toward the root.

Fig. 2.4.1.d – Fat tree

o universal fat tree
� number of links between the nodes grows

exponentially toward the root, thereby
allowing increased traffic toward the root
and reducing the communication bottleneck.

� examples: the Thinking Machine’s CM5,
Meiko CS2

 13

 Hypercube
• each processor connects to 2n neighbors in a n

dimension Hypercube
• examples: iPSC, nCUBE, SGI O2K

Fig. 2.4.1.e – Hypercubes
Hypercubes of dimension zero through four. The processors in
the cubes are labeled with integers, here represented as binary
numbers. Two processors are neighbors if and only if their
binary labels differ only in one digit place.

 14

2.4.2 Dynamic Interconnects
• Paths are established as needed between processors
• System expansion is difficult
• Processors are usually equidistant

Examples: Bus-based, Crossbar, Multistage Networks

Bus-based Networks
• In a bus-based network, processors share a single

communication resource [the bus].
• A bus is a highly non-scalable architecture, because

only one processor can communicate on the bus at a
time.

• Used in shared-memory parallel computers to
communicate read and write requests to a shared
global memory

Fig. 2.4.2.a – Bus-based Networks
A bus-based interconnection network, used here to
implement a shared-memory parallel computer. Each
processor (P) is connected to the bus, which in turn is
connected to the global memory. A cache associated with
each processor stores recently accessed memory values in
an effort to reduce the bus traffic.

 15

Crossbar Switching Network
• A crossbar switch avoids competition for bandwidth

by using O(N2) switches to connect N inputs to N
outputs.

• Although highly non-scalable, crossbar switches are a
popular mechanism for connecting a small number of
workstations, typically 20 or fewer.

Fig. 2.4.2.b– Crossbar Network
A 4*4 nonblocking crossbar, used here to connect 4
processors. On the right, two switching elements are
expanded: the top one is set to pass messages through
and the lower one to switch messages. Each processor is
depicted twice. Pairs of processors can communicate
without preventing other processor pairs from
communicating.

 16

 Multistage Interconnection Networks
• In a multistage interconnection network (MIN),

switching elements are distinct from processors.
• Fewer than O(p2) switches are used to connect p

processors.
• Messages pass through a series of switch stages.
• In a unidirectional MIN, all messages must traverse

the same number of wires, and so the cost of sending
a message is independent of processor location – in
effect, all processors are equidistant.

• In a bi-directional MIN, the number of wires traversed
depends to some extent on processor location,
although to a lesser extent than in a mesh or
hypercube.

• Example: IBM SP networks are bi-directional
multistage inter-connection networks:

o bi-directional, any-to-any inter-node
connection: allows all processors to send
messages simultaneously.

o multistage interconnection: on larger systems
(over 80 nodes), additional intermediate
switches are added as the system is scaled
upward

Fig. 2.4.2.c – Multistage interconnection network

Shaded circles represent processors and unshaded circles
represent crossbar switches.

 17

2.5 Hardware Specifics – Examples

2.5.1 IBM SP2

• Message passing system
• Cluster of workstations
• 200 MHz power 3 CPU

o Peak 800 MFLOPS
o 4-16 MB 2nd-level cache
o sustained memory bandwidth 1.6 GB/s

• Multistage crossbar switch
• MPI

o Latency 21.7 usec
o Bandwidth 139 MB/sec

• I/O hardware

 18

2.5.2 IBM PWR3 – SDSC Blue Horizon
• 222 MHz …888MFLOPS (1152 CPUs, 144 nodes with 8 CPUs

(SMP))
• 2 Pipes, 1FMA per pipe per clock tick
• MPI & OpenMP programming
• 32 KB L1 Cache, 2MB L2 Cache

2.5.3 Sun HPC

• 400 MHz …..800 MFLOPS (64 CPUs)
• MPI or OpenMP Programming
• 16 KB L1 Cache, 4MB L2 Cache, 64GB total Main memory
• 2 Pipes, 1 FLOP per pipe per cycle

MEMORY

bus

CPUCPUCPUCPU

MEMORY

bus

CPUCPUCPUCPU

MEMORY

bus

CPUCPUCPUCPU

Networ
k

MEMORY

bus

CP
U

CP
U

CP
U

CP
U

 19

2.5.4 Cray T3E
• Remote memory access system
• Single system image
• 600 MHz DEC Alpha CPU

o Peak 1200 MFLOPS
o 96 KB 2nd-level cache
o Sustained memory bandwidth 600 MB/s

• 3D torus network
• MPI

o Latency 17 usec
o Bandwidth 300 MB/s

• Shmem
o Latency 4 usec
o Bandwidth 400 MB/s

• SCI-based I/O network

 20

2.5.5 SGI O2K

• Cc-NUMA system
• Single system image
• 600250 MHz MIPS R10000 CPU

o Peak 500 MFLOPS
o 2nd-level data cache 4-8 MB
o Sustained memory bandwidth 670 MB/s

• 4D hypercube
• MPI

o Latency 16 usec
o Bandwidth 100 MB/s

• Remote memory access
o Latency 497 usec
o Bandwidth 600 MB/s

 21

2.5.6 Cluster of workstations

• Hierarchical architecture: shared memory in a node, message
passing across nodes.

• PC-based nodes or workstation-based nodes
• Networks: Myrianet, Scalable Coherent Interface, Gigabit

Ethernet

 22

3. PARALLEL PROGRAMMING MODELS

• A parallel computer system should be flexible and easy to use
and should exhibit good programmability in supporting various
parallel algorithms.

• Explicit parallelism means that parallelism is explicitly
specified in the source code by the programmer using special
language constructs, compiler directives or library function
calls.

• If the programmer does not explicitly specify parallelism, but
lets the compiler and the run-time support system automatically
exploit it, we have the implicit parallelism.

3.1 Implicit Parallelism

 3.1.1 Parallelizing Compilers

o Automatic parallelization of sequential programs
o Do not exploit functional parallelism
o Compiler performs dependence analysis on a sequential

program’s source data and then – using a suite of
program transformation techniques – converts the
sequential code into a native parallel code.

o Some performance studies indicate, however, that the
parallelizing compilers are not very effective.

3.2 Explicit Parallelism

 Although many explicit programming models have been
proposed, three models have become dominant ones: data parallel,
message passing and shared variable.

 3.2.1 Data parallel

o Execute the same instruction or program segment over
different data sets simultaneously on multiple computing
nodes.

o Has a single thread of control
o Parallelism is exploited at data set level
o No functional parallelism available

karuna
Highlight

karuna
Highlight

karuna
Highlight

 23

3.2.1.1 Fortran 90
� Uses array syntax to express parallelism
� Implementation on SIMD and MIMD machines
� Single processor versions are available
� Communication is transparent

3.2.1.2 High Performance Fortran (HPF)
� Evolves from Fortran 90, allows for far more detail

in expressing parallelism
� Attempt to standardize data parallel programming
� Data distribution and alignment can be defined
� Allows explicit definition of parallelism

3.2.2 Message-passing model

o Multithreading – a message-passing program consists of
multiple processes, each of which has its own thread of
control and may execute different code. Both control
parallelism (MPMD – Multiple-Program-Multiple-Data)
and data parallelism (SPMD – Single-Program-Multiple-
Data) are supported.

o Asynchronous – the processes of a message-passing
program execute asynchronously.

o Separate address space - the processes of a parallel
program reside in different address spaces.

o Explicit interactions – the programmer must solve all the
interaction issues, including data mapping,
communication and synchronization.

o Scales well, especially if data is well distributed.

3.2.2.1 PVM
 The PVM (Parallel Virtual Machine) is a software
package that permits a heterogeneous collection of Unix
and/or NT computers hooked together by a network to be
used as a single large parallel computer. Thus large
computational problems can be solved most cost
effectively by using the aggregate power and memory of
many computers. The software is very portable. The
source, which is available free thru Netlib
[www.netlib.org], has been compiled on everything from
laptops to CRAYs.

karuna
Highlight

karuna
Highlight

 24

PVM enables users to exploit their existing
computer hardware to solve much larger problems at
minimal additional cost. Hundreds of sites around the
world are using PVM to solve important scientific,
industrial, and medical problems in addition to PVM’s
use as an educational tool to teach parallel programming.

3.2.2.2 MPI

• MPI (Message Passing Interface) is the standard
programming interface

� MPI 1.0 in 1994
� MPI 2.0 in 1997

• Library interface (Fortran, C, C++)
• It includes

� point-to-point communication
� collective communication
� barrier synchronization
� one-sided communication (MPI 2.0)
� parallel I/O (MPI 2.0)
� process creation (MPI 2.0)

3.2.3 Shared variable

o Similar to data-parallel model, in that it has single
address space

o Similar to message-passing model, in that it is
multithreading and asynchronous

o Data reside in a single, shared address space and does
not have to be explicitly allocated

o Communication is done implicitly through shared
reads and writes of variables

o Synchronization is explicit

3.2.3.1 SGI Power C Model

� extension to the sequential C language with
compiler directives (pragmas) and library
functions

� supports shared-variable parallel programming
� similar extended constructs are also provided

for Fortran
� it is structured and relatively simple

karuna
Highlight

karuna
Highlight

 25

3.2.3.2 OpenMP: Directive-based SM parallelization

� OpenMP is a standard shared memory
programming interface(1997)

� directives for Fortran77 and C/C++
� fork-join model resulting in global program
� it includes:

o parallel loops
o parallel sections
o parallel regions
o shared and private data
o synchronization primitives

� barrier
� critical region

4. Topics in Parallel Computation

 4.1 Types of parallelism: two extremes

4.1.1 Data parallel
• Each processor performs the same task on different data
• Data mapping is critical
• Programmed with HPF or message passing
• Example – grid problems

4.1.2 Task parallel

• Each processor performs a different task
• More difficult to balance load
• Commonly programmed with message passing
• Example – signal processing

Most applications fall somewhere on the continuum
between these two extremes

 26

4.2 Programming Methodologies

• Bulk of program in Fortran, C, or C++
• Data and/or tasks are split up onto different processors by:

o Distributing the data onto local memory of CPU thus
causing CPU to work on its local memory (MPPs,
MPI).

o Distribute work of each loop to different CPU’s
(SMP, OpenMP).

o Hybrid distribute data onto SMP box and then within
the SMP distribute work of each loop to different
CPUs within the box (SMP-Cluster, MPI&OpenMP).

 27

4.3 Computation Domain decomposition and Load Balancing

4.3.1 Domain decomposition
• The computation domain is partitioned into several subdomains

and then mapped onto processors of a parallel system.
• In general, the number of subdomains equals to the number of

processors in a parallel system.

4.3.2 Load Balancing
• The goal of partitioning is to distribute the computation load

such that all processors can finish their computation at about
the same time.

• For homogeneous parallel systems, the computation load is
distributed as evenly as possible in a parallel computer.

• For heterogeneous parallel system, the computation load is
distributed according to the computing power of each
processor.

4.3.3 Overlapping Subdomains and Non-Overlapping
Subdomains:

 4.3.3.1 Overlapping Subdomains

• There is a common computation domain between two
adjacent subdmains.

 Subdomain 1

 Γ 2

 Subdomain 2

 1Γ

• Mathematical formulations are applied on Γ 1 and Γ 2
• Difficult to deal with irregular overlapping areas.

 28

4.3.3.2 Non-overlapping Subdomains

• There is only an interface between two adjacent
subdomains

 Subdomain 1

 Γ

 Subdomain 2

• Mathematical formulations are applied on Γ .
• Can handle irregular interfaces easily.

 29

 4.3.4 Domain Decomposition for Numerical Analysis

Overlapping Subdomains

 Subdomain 1

 Γ 1

 Subdomain 2

 Γ 2

Domain Decomposition

 Subdomain 1

 2
1 fφ∇ = Γ 2

 2 1φ φ=

 2 1φ φ
η η

∂ ∂
=

∂ ∂

 Subdomain 2

 Γ 1 2

2 fφ∇ =

 1 2φ φ=

1 2φ φ
η η

∂ ∂
=

∂ ∂

 30

Non-overlapping Subdomains

 Subdomain 1
 Γ

 Subdomain 2

Domain Splitting

 Subdomain 1

 Γ

 2 ()

1
n fφ∇ =

 () ()
1

n ngφ =

 (1) () ()

2 (1)n n ng gθφ θ+ = + −

 (D)

 Subdomain 2

 2 ()

2
n fφ∇ =

() ()
2 1

n nφ φ
η η

∂ ∂
=

∂ ∂

 (N)

 31

Interface Relaxation Process

Iterative Scheme 1:
1. Solve interior completely.
2. Update the interface data.
3. Repeat 1. and 2. until convergence on the interface.

Iterative Scheme 2:

1. One iteration for the interior mesh points of both subdomains.
2. Update the interface mesh points.
3. Continue 1. and 2. until convergence of all mesh points.

 32

4.4 Numerical Solution Methods

 4.4.1 Iterative Solution Methods

 4.4.1.1 Parallel SOR (successive over-relaxation)

4.4.1.1.1 Parallel SOR Iterative Algorithms for the Finite
Difference Method.

One dimensional example:

2

2 1d
dx

φ
=

 Difference equation:

 φ j+1 – 2 φ j + φ j-1 = ∆x2 j=2,…,N-1

 SOR Iterative Scheme:

 φ j
(n+1/2) = (φ j+1

(n) + φ j-1
(n+1) - ∆x2)/2

 φ j

(n+1) = α φ j
(n+1/2) + (1 -α) φ j

(n)

 33

Expand to Matrix Form:

1 0 0 0 0 0 0 0 φ1 φ1/∆x2

-1 2 -1 0 0 0 0 0 φ2 1

0 -1 2 -1 0 0 0 0 φ3 1

0 0 -1 2 -1 0 0 0 φ4 1
 = ∆x2
0 0 0 -1 2 -1 0 0 φ5 1

0 0 0 0 -1 2 -1 0 φ6 1

0 0 0 0 0 -1 2 -1 φ7 1

0 0 0 0 0 0 0 1 φ8 φ8/∆x2

 ..

 1 2 3 4 5 6 7 8

 subdomain 2
 subdomain 1
 ..

 1 2 3 4 5 6 7 8

 interface

 34

Reorder Equations:

1 0 0 0 0 0 0 0 φ1 φ1/∆x2

-1 2 -1 0 0 0 0 0 φ2 1

0 -1 2 -1 0 0 0 0 φ3 1

0 0 -1 2 0 0 0 -1 φ4 1
 = ∆x2
0 0 0 0 2 -1 0 -1 φ6 1

0 0 0 0 -1 2 -1 0 φ7 1

0 0 0 0 0 0 1 0 φ8 φ8/∆x2

0 0 0 -1 -1 0 0 2 φ5 1

 Subdomain 1: φ2, φ3, φ4

Interface: φ5

Subdomain 2: φ6, φ7

 35

Two Dimensional Example:

2 2

2 2 1
x y
φ φ∂ ∂

+ =
∂ ∂

Difference Equation:

c1(φi+1,j - 2φi,j + φi-1,j) + c2(φi,j+1 - 2φi,j – φi,j-1) = 1

SOR Iterative Scheme:

φi,j

(n+1/2) = (c1/c3) (φi+1,j
(n) + φi-1,j

(n+1)) + (c2/c3) (φi,j+1
(n) + φi,j-1

(n+1)) – 1/c3

φi,j

(n+1) = α φi,j
(n+1/2) + (1-α)φi,j

(n)

where:

c1 = 1/∆x2, c2 = 1/∆y2 and c3 = 2/∆x2 + 2/∆y2

 (n)
 i,j+1

 i-1, j i,j i+1,j

 (n+1) (n)

 i,j-1 (n+1)

 36

 o o o o o

 o 3 o 6 o 9 o o

 o 2 o 5 o 8 o o

 o 1 o 4 o 7 o o

 o o o o o

Reorder Equations:

 o o o o o

 o 3 o 6 o 9 o o Column type subdomains:

 Subdomain 1: 1, 2, 3
 o 2 o 5 o 8 o o
 Subdomain 2: 7, 8, 9

 o 1 o 4 o 7 o o Interface: 4, 5, 6

 o o o o o

 37

 o o o o o

 o 3 o 6 o 9 o o Row type subdomains:

 Subdomain 1: 1, 4, 7
 o 2 o 5 o 8 o o
 Subdomain 2: 3, 6, 9

 o 1 o 4 o 7 o o Interface: 2, 5, 8

 o o o o o

 o o o o o
 Block type subdomains:

 o 3 o 6 o 9 o o Subdomain 1: 1

 Subdomain 2: 7
 o 2 o 5 o 8 o o
 Subdomain 3: 3

 o 1 o 4 o 7 o o Subdomain 4: 9

 Interface: 2, 8, 4, 5, 6
 o o o o o

 38

4.4.1.1.2 Parallel SOR Iterative Algorithms for the Finite
Element Method.

The General Form of a Finite Element System:

 k11 k1i 0 u1 f1

 ki1 kii ki2 ui = fi

 0 k2i k22 u2 f2

SOR Iterative Scheme:

 k11u1
(n+1/2) = f1 – k1i ui

(n)

 u1
(n+1) = αu1

 (n+1/2) + (1-α)u1
(n) (1)

 kiiui
(n+1/2) = fi –ki1u1

(n+1) – ki2u2
(n)

 ui
(n+1) = αui

(n+1/2) + (1-α)ui
(n) (2)

 k22u2
(n+1/2) = f2 – k2iui

(n+1)

 u2
(n+1) = αu2

(n+1/2) + (1-α)u2
(n) (3)

 39

Reorder Equations:

 k11 0 k1i u1 f1

 0 k22 k2i u2 = f2

 ki1 ki2 kii ui fi

Parallel SOR Iterative Scheme:

 k11u1
(n+1/2) = f1 – k1i ui

(n)

 u1
(n+1) = αu1

(n+1/2) + (1-α)u1
(n) (4)

 k22u2
(n+1/2) = f2 – k2iui

(n)

 u2
(n+1) = αu2

(n+1/2) + (1-α)u2
(n) (5)

 kiiui
(n+1/2) = fi –ki1u1

(n+1) – ki2u2
(n+1)

 ui
(n+1) = αui

(n+1/2) + (1-α)ui
(n) (6)

 40

4.4.1.2 Conjugate Gradient Method

Conjugate Gradient (CG) Method is a popular iterative method for solving
large systems of linear equations. CG is effective for systems of the form:
 A x = b

where x is an unknown vector, b is a known vector, and A is a known,
square, symmetric, positive-definite (or positive-indefinite) matrix. This
system arises in many important settings, such as using finite difference and
finite element methods for solving partial differential equations, structural
analysis and circuit analysis.

4.4.1.2.1 Conjugate Iterative Procedure

(0) (0) (0)

() ()
()

() ()

(1) () () ()

(1) () () ()

(1) (1)
(1)

() ()

(1) (1) (1) ()

T
i i

i T
i i

i i i i

i i i i

T
i i

i T
i i

i i i i

d r b Ax
r r

d Ad

x x d

r r Ad

r r
r r

d r d

α

α

α

β

β

+

+

+ +
+

+ + +

= = −

=

= +

= −

=

= +

 41

4.4.1.3. Multigrid Method

Many standard iterative methods (i.e. Jacobi, SOR, Gauss-Seidel) possess
the smoothing property. This property makes these methods very effective at
eliminating the high-frequency or oscillatory components of the error, while
leaving the low-frequency or smooth components relatively unchanged.

One way to improve a relaxation scheme, at least in its early stages, is to use
a good initial guess. A known technique for obtaining an improved initial
guess is to perform some preliminary iterations on a coarse grid and then use
the resulting approximation as an initial guess on the original fine grid.

Relaxation on a coarser grid is less expensive since there are fewer
unknowns to be updated. Also, since the convergence factor behaves like 1-
O(h2), the coarser grid will have a marginally improved convergence rate.

The linear system of equations considered is:

 Ax = b

4.4.1.3.1 First Strategy

1. Relax on Ax=b on a very coarse grid.
2. …
3. …
4. …
5. Relax on Ax=b on 4hΩ to obtain an initial guess for 2hΩ .
6. Relax on Ax=b on 2hΩ to obtain an initial guess for hΩ .
7. Relax on Ax=b on hΩ to obtain a final approximation to the

solution.

 42

4.4.1.3.2 Second Strategy (Coarse Grid Correction)

1. Relax on Ax=b on hΩ to obtain an approximation hv .
2. Compute the residual hr b Av= − .
3. Relax on the residual equation Ae=r to obtain an approximation

to the error e2h.
4. Correct the approximation obtained on hΩ with the error

estimate obtained on
2 2: .h h h hv v eΩ ← +

 Transformation between grids.
 Interpolation (prolongation)

1. Operator: 2
nh
nhI .

2. Transferring the data from a coarse grid 2nhΩ to a finer grid nhΩ .
3. Linear interpolation can be used.

Injection (restriction)

1. Operator: 2
nh
nhI

2. Moving data from a finer grid nhΩ to a coarser grid 2nhΩ .
3. Data on the same grid can be used directly.
4. Full weighting can also be used.

Coarse Grid Correction Scheme: (,)h h hv CG v b← .
Relax 1v times on h h hA x b= with initial guess hv .
Compute 2 2 ()h h h h h

hr I b A v= − .
Solve 2 2 2h h hA e r= on 2hΩ .
Correct fine grid approximation: 2

2
h h h h

hv v I e← + .
Relax 2v times on h h hA x b= on hΩ with initial guess hv .

 43

4.4.2 Direct Solution Method

4.4.2.1 Gauss Elimination Method

The Gauss Elimination Method is the most used direct solver
for the linear system:

 Ax = b
where A is a known, square, positive definite and dense system.

The general procedure for Gauss elimination is to factor the A
matrix into an upper-triangular matrix:
 Ux = y
Then use back substitution to obtain the solution x.

4.4.2.1.1.Gauss Elimination Procedure:

The Gaussian elimination algorithm can be written in
algorithmic form as shown:

For 1,..., 1k n= − For , 1,...,1k n n= −
 For 1,...,i k n= + k kx b=

 ik
ik

kk

al
a

= For 1,...,i k n= +

 For 1,...,j k n= + k k ki ix x a x= −

 ij ij ik kja a l a= − k
k

kk

xx
a

=

 i i ik kb b l b= −

(a) Forward Reduction (b) Back Substitution

 44

5. REFERENCES

1. K. Hwang, Z. Xu, “ Scalable Parallel Computing”, Boston:
WCB/McGraw-Hill, c1998.

2. I. Foster, “ Designing and Building Parallel Programs”, Reading,

Mass: Addison-Wesley, c1995.

3. D. J. Evans, “Parallel SOR Iterative Methods”, Parallel Computing,
Vol.1, pp. 3-8, 1984.

4. L. Adams, “Reordering Computations for Parallel Execution”,

Commun. Appl. Numer. Methods, Vol.2, pp 263-271, 1985.

5. K. P. Wang and J. C. Bruch, Jr., “A SOR Iterative Algorithm for the
Finite Difference and Finite Element Methods that is Efficient and
Parallelizable”, Advances in Engineering Software, 21(1), pp. 37-48,
1994.

6. K. P. Wang and J. C. Bruch, Jr., “An Efficient Iterative Parallel Finite

Element Computational Method”, The Mathematics of Finite
Elements and Applications, edited by J. R. Whiteman, John Wiley and
Sons, Inc., Chapter 12, pp. 179-188, 1994.

