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1. Introduction 

 
1.1  What is Parallel Computation? 

 Computations that use multi-processor computers and/or several 
independent computers interconnected in some way, working together 
on a common task. 

• Examples: CRAY T3E, IBM-SP, SGI-3K, Cluster of 
Workstations. 

 
1.2  Why use Parallel Computation? 

• Computing power (speed, memory) 
• Cost/Performance 
• Scalability 
• Tackle intractable problems 

 
1.3 Performance limits of Parallel Programs 

• Available Parallelism – Amdahl’s Law 
• Load Balance 

o some processors work while others wait 
• Extra work 

o management of parallelism 
o redundant computation 

• Communication 
 

1.4 Top 500 Supercomputers – Worldwide 
• Listing of the 500 most powerful computers in the World, 

available from www.top500.org. 
• Rmax [Gflops/s for the largest problem] - from LINPACK 

MPP [Massively Parallel Processors] 
• Updated twice a year. 
• Top 13 presented in Table 1.4. 
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Table 1.4 

TOP 10 - June 2003 
 

Rank Manufacturer Computer  Rmax Installation Site Country Year # 
Proc 

1  NEC  Earth-Simulator 35860
Earth Simulator 
Center 
Japan/2002 

Japan 2002 5120

2  Hewlett-
Packard  

ASCI Q - 
AlphaServer SC 
ES45/1.25 GHz 

13880
Los Alamos 
National 
Laboratory 

USA  2002 8192

3  Linux 
Networx 

MCR Linux 
Cluster Xeon 2.4 
GHz - Quadrics 

7634

Lawrence 
Livermore 
National 
Laboratory 

USA  2002 2304 

4  IBM  ASCI White, SP 
Power3 375 MHz 7304

Lawrence 
Livermore 
National 
Laboratory 

USA  2000 8192 

5  IBM  SP Power3 375 
MHz 16 way 7304 NERSC/LBNL USA  2002 6656 

6  IBM  
xSeries Cluster 
Xeon 2.4 GHz - 
Quadrics 

6586 

Lawrence 
Livermore 
National 
Laboratory 

USA  2003 1920 

7  Fujitsu 
PRIMEPOWER 
HPC2500 (1.3 
GHz) 

5406 

National 
Aerospace 
Laboratory of 
Japan 

Japan  2002 2304 

8  Hewlett-
Packard  

rx2600 Itanium2 
1 GHz Cluster - 
Quadrics 

4881 
Pacific Northwest 
National 
Laboratory 

USA  2003 1540 

9  Hewlett-
Packard  

AlphaServer SC 
ES45/1 GHz 4463 

Pittsburgh 
Supercomputing 
Center 

USA  2001 3016 

10  Hewlett-
Packard  

AlphaServer SC 
ES45/1 GHz 3980 

Commissariat a 
l'Energie 
Atomique (CEA) 

France  2001 2560 
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2. Parallel Systems 
 
 2.1 Memory Distribution 
 

 2.2.1 Distributed Memory 
• Each processor in a parallel computer has its own 

memory (local memory); no other processor can access 
this memory. 

• Data can only be shared by message passing 
• Examples: Cray T3E, IBM SP2 

 
2.2.2 Shared Memory 

• Global memory which can be accessed by all processors 
of a parallel computer. 

• Data in the global memory can be read/write by any of 
the processors. 

• Examples: Sun HPC, Cray T90 
 

2.1.3 Hybrid (SMP Cluster) 
• A distributed memory parallel system but has a global 

memory address space management. Message passing 
and data sharing are taken care of by the system. 

• Examples: SGI Power Challenge Array 
 
2.1.4 Comparison 

• Shared Memory 
o Explicit global data structure 
o Decomposition of work is independent of data 

layout 
o Communication is implicit 
o Explicit synchronization 

� Need to avoid race condition and over 
writing 

• Message Passing 
o Implicit global data structure 
o Decomposition of data determines assignment of 

work 
o Communication is explicit 
o Synchronization is implicit 
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2.2. Instruction 
 Flynn’s classification of computer architectures (1966): 
 
 2.2.1 MIMD (Multi-Instruction Multi-data) 

• All processors in a parallel computer can execute different 
instructions and operate on different data at the same time. 

• Parallelism achieved by connecting multiple processors 
together 

• Shared or distributed memory 
• Different programs can be run simultaneously 
• Each processor can perform any operation regardless of 

what other processors are doing. 
• Examples: Cray T90, Cray T3E, IBM-SP2 

 
2.2.2. SIMD (Single-Instruction Multi-Data) 

• All processors in a parallel computer execute the same 
instructions but operate on different data at the same time. 

• Only one program can be run at a time. 
• Processors run in synchronous, lockstep function 
• Shared or distributed memory 
• Less flexible in expressing parallel algorithms, usually 

exploiting parallelism on array operations, e.g. F90 
• Examples: CM2, MsPar 

 
2.2.3 MISD (Multiple-Instruction Single-Data) 

• Special purpose computer 
 

2.2.4 SISD (Single-Instruction Single-Data) 
• Serial computer 

 
 

 
 
 
 
 
 
 

karuna
Highlight

karuna
Highlight

karuna
Highlight



 8

2.3 Processes and Granularity 
 
On a parallel computer, user applications are executed as processes, tasks or 
threads. The traditional definition of process is a program in execution. To 
achieve an improvement in speed through the use of parallelism, it is 
necessary to divide the computation into tasks or processes that can be 
executed simultaneously. The size of a process can be described by its 
granularity.  
 
 2.3.1 Fine-grain 

• In fine granularity, a process might consist of a few 
instructions, or perhaps even one instruction. 

 
2.3.2. Medium-grain 

• Medium granularity describes the middle ground between 
fine-grain and course grain. 

 
2.3.3 Course-grain 

• In course granularity, each process contains a large number 
of sequential instructions and takes a substantial time to 
execute. 

 
Sometimes granularity is defined as the size of the computation between 
communication or synchronization points. Generally, we want to increase 
the granularity to reduce the cost of process creation and interprocess 
communication, but of course this will likely reduce the number of 
concurrent processes and the amount of parallelism. A suitable compromise 
has to be made. 
 
In general, we would like to design a parallel program in which it is easy to 
vary granularity: i.e. a scalable program design. 
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2.4 Connection Topology 
 
The best choice would be a fully connected network in which each processor 
has a direct link to every other processor. Unfortunately, this type of 
network would be very expensive and difficult to scale. Instead, processors 
are arranged in some variation of a grid, torus, hypercube, etc. Key issues in   
network design are the network bandwidth and the network latency. The 
bandwidth is the number of bits that can be transmitted in unit time, given as 
bits/sec. The network latency is the time to make a message transfer through 
the network. 
 
2.4.1 Static Interconnects 

• Consist of point-to-point links between processors 
• Can make parallel system expansion easy 
• Some processors may be “closer” than others 
• Examples: Line/Ring, Mesh/Torus, Tree, Hypercube 

 
  Line/Ring.  

o a line consists of a row of processors with connections 
limited to the adjacent nodes. 

o the line can be formed into a ring structure by connecting 
the free ends. 

 

    Fig. 2.4.1.a - Ring 
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Mesh 
o processors are connected in rows and columns in a 2 

dimensional mesh 
o example: Intel Paragon 

 

 
Fig. 2.4.1.b – 2D Mesh 

  In a mesh network of dimension D, each nonboundary 
processor is connected to 2D immediate neighbors. 
Connections typically consist of two wires, one in each 
direction. 
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 Torus 
This architecture extends from the mesh by having wraparound 

connections. The torus is a symmetric topology, whereas a mesh is 
not. All added wraparound connections help reduce the torus diameter 
and restore the symmetry. 

o one-dimensional torus 
o two-dimensional torus 
o three-dimensional torus 
o example: Cray T3E 

 

 
 

Fig. 2.4.1.c – 2D Torus 
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 Tree  
o binary tree 

� first node is called root 
� each node has two links connecting to two 

nodes below it as the network fans out from 
the root node 

� At the first level below the root node, there 
are two nodes. At the next level, there are 
four nodes, and at the j-th level below the 
root node there are  2j nodes. 

o fat tree 
� The number of links is progressively 

increased toward the root. 
 

 
 
Fig. 2.4.1.d – Fat tree 
 

o universal fat tree 
� number of links between the nodes grows 

exponentially toward the root, thereby 
allowing increased traffic toward the root 
and reducing the communication bottleneck. 

� examples: the Thinking Machine’s CM5, 
Meiko CS2 
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 Hypercube 
• each processor connects to 2n neighbors in a n  

dimension Hypercube 
• examples: iPSC, nCUBE, SGI O2K 

 

 
 

Fig. 2.4.1.e – Hypercubes 
Hypercubes of dimension zero through four. The processors in 
the cubes are labeled with integers, here represented as binary 
numbers. Two processors are neighbors if and only if their 
binary labels differ only in one digit place. 
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2.4.2 Dynamic Interconnects 
• Paths are established as needed between processors 
• System expansion is difficult 
• Processors are usually equidistant 

Examples: Bus-based, Crossbar, Multistage Networks 
 

Bus-based Networks 
• In a bus-based network, processors share a single 

communication resource [the bus].  
• A bus is a highly non-scalable architecture, because 

only one processor can communicate on the bus at a 
time. 

• Used in shared-memory parallel computers to 
communicate read and write requests to a shared 
global memory 

 

 
 

Fig. 2.4.2.a – Bus-based Networks 
A bus-based interconnection network, used here to 
implement a shared-memory parallel computer. Each 
processor (P) is connected to the bus, which in turn is 
connected to the global memory. A cache associated with 
each processor stores recently accessed memory values in 
an effort to reduce the bus traffic. 
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Crossbar Switching Network 
• A crossbar switch avoids competition for bandwidth 

by using O(N2) switches to connect N inputs to N 
outputs. 

• Although highly non-scalable, crossbar switches are a 
popular mechanism for connecting a small number of 
workstations, typically 20 or fewer. 

 

 
 

Fig. 2.4.2.b– Crossbar Network 
A 4*4 nonblocking crossbar, used here to connect 4 
processors. On the right, two switching elements are 
expanded: the top one is set to pass messages through 
and the lower one to switch messages. Each processor is 
depicted twice. Pairs of processors can communicate 
without preventing other processor pairs from 
communicating. 
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 Multistage Interconnection Networks 
• In a multistage interconnection network (MIN), 

switching elements are distinct from processors. 
• Fewer than O(p2) switches are used to connect p 

processors. 
• Messages pass through a series of switch stages. 
• In a unidirectional MIN, all messages must traverse 

the same number of wires, and so the cost of sending 
a message is independent of processor location – in 
effect, all processors are equidistant. 

• In a bi-directional MIN, the number of wires traversed 
depends to some extent on processor location, 
although to a lesser extent than in a mesh or 
hypercube. 

• Example: IBM SP networks are bi-directional 
multistage inter-connection networks: 

o bi-directional, any-to-any inter-node 
connection: allows all processors to send 
messages simultaneously. 

o multistage interconnection: on larger systems 
(over 80 nodes), additional intermediate 
switches are added as the system is scaled 
upward 

 
Fig. 2.4.2.c – Multistage interconnection network 

Shaded circles represent processors and unshaded circles 
represent crossbar switches.  
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2.5 Hardware Specifics – Examples  
     
2.5.1 IBM SP2  

• Message passing system  
• Cluster of workstations 
• 200 MHz power 3 CPU 

o Peak 800 MFLOPS 
o 4-16 MB 2nd-level cache 
o sustained memory bandwidth 1.6 GB/s 

• Multistage crossbar switch 
• MPI 

o Latency 21.7 usec 
o Bandwidth 139 MB/sec 

• I/O hardware 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 18

2.5.2 IBM PWR3 – SDSC Blue Horizon  
• 222 MHz …888MFLOPS (1152 CPUs, 144 nodes with 8 CPUs 

(SMP))   
• 2 Pipes, 1FMA per pipe per clock tick 
• MPI & OpenMP programming 
• 32 KB L1 Cache, 2MB L2 Cache 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
2.5.3 Sun HPC 

 
• 400 MHz …..800 MFLOPS (64 CPUs) 
• MPI or OpenMP Programming 
• 16 KB L1 Cache, 4MB L2 Cache, 64GB total Main memory 
• 2 Pipes, 1 FLOP per pipe per cycle 
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2.5.4 Cray T3E  
• Remote memory access system 
• Single system image 
• 600 MHz DEC Alpha CPU 

o Peak 1200 MFLOPS 
o 96 KB 2nd-level cache 
o Sustained memory bandwidth 600 MB/s 

• 3D torus network 
• MPI 

o Latency 17 usec 
o Bandwidth 300 MB/s 

• Shmem 
o Latency 4 usec 
o Bandwidth 400 MB/s 

• SCI-based I/O network 
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2.5.5 SGI O2K 

• Cc-NUMA system 
• Single system image 
• 600250  MHz MIPS R10000 CPU 

o Peak 500 MFLOPS 
o 2nd-level data cache 4-8 MB 
o Sustained memory bandwidth 670 MB/s 

• 4D hypercube 
• MPI 

o Latency 16 usec 
o Bandwidth 100 MB/s 

• Remote memory access 
o Latency 497 usec 
o Bandwidth 600 MB/s 
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2.5.6 Cluster of workstations  

• Hierarchical architecture: shared memory in a node, message 
passing across nodes. 

• PC-based nodes or workstation-based nodes 
• Networks: Myrianet, Scalable Coherent Interface, Gigabit 

Ethernet 
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3. PARALLEL PROGRAMMING MODELS  
 

• A parallel computer system should be flexible and easy to use 
and should exhibit good programmability in supporting various 
parallel algorithms. 

• Explicit parallelism means that parallelism is explicitly 
specified in the source code by the programmer using special 
language constructs, compiler directives or library function 
calls.                                                                                                                         

• If the programmer does not explicitly specify parallelism, but    
lets the compiler and the run-time support system automatically 
exploit it, we have the implicit parallelism. 

 
3.1 Implicit Parallelism   
       
 3.1.1 Parallelizing Compilers  

o Automatic parallelization of sequential programs 
o Do not exploit functional parallelism 
o Compiler performs dependence analysis on a sequential 

program’s source data and then – using a suite of  
program transformation techniques – converts the 
sequential code into a native parallel code. 

o Some performance studies indicate, however, that the 
parallelizing compilers are not very effective. 

 
3.2 Explicit Parallelism  
 
 Although many explicit programming models have been 
proposed, three models have become dominant ones: data parallel, 
message passing and shared variable. 
 
 3.2.1 Data parallel 

o Execute the same instruction or program segment over 
different data sets simultaneously on multiple computing 
nodes. 

o Has a single thread of control 
o Parallelism is exploited at data set level 
o No functional parallelism available 
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3.2.1.1 Fortran 90 
� Uses array syntax to express parallelism 
� Implementation on SIMD and MIMD machines 
� Single processor versions are available  
� Communication is transparent 

 
3.2.1.2 High Performance Fortran (HPF) 
� Evolves from Fortran 90, allows for far more detail 

in expressing parallelism 
� Attempt to standardize data parallel programming 
� Data distribution and alignment can be defined 
� Allows explicit definition of parallelism 

 
3.2.2 Message-passing model 

o Multithreading – a message-passing program consists of 
multiple processes, each of which has its own thread of 
control and may execute different code. Both control 
parallelism (MPMD – Multiple-Program-Multiple-Data) 
and data parallelism (SPMD – Single-Program-Multiple-
Data) are supported. 

o Asynchronous – the processes of a message-passing 
program execute asynchronously. 

o Separate address space - the processes of a parallel 
program reside in different address spaces. 

o Explicit interactions – the programmer must solve all the 
interaction issues, including data mapping, 
communication and synchronization. 

o Scales well, especially if data is well distributed. 
 

3.2.2.1 PVM 
 The PVM (Parallel Virtual Machine) is a software 
package that permits a heterogeneous collection of Unix 
and/or NT computers hooked together by a network to be 
used as a single large parallel computer. Thus large 
computational problems can be solved most cost 
effectively by using the aggregate power and memory of 
many computers. The software is very portable. The 
source, which is available free thru Netlib 
[www.netlib.org], has been compiled on everything from 
laptops to CRAYs. 
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PVM enables users to exploit their existing 
computer hardware to solve much larger problems at 
minimal additional cost. Hundreds of sites around the 
world are using PVM to solve important scientific, 
industrial, and medical problems in addition to PVM’s 
use as an educational tool to teach parallel programming.  
 
3.2.2.2 MPI 

• MPI (Message Passing Interface) is the standard 
programming interface 

� MPI 1.0 in 1994 
� MPI 2.0 in 1997 

• Library interface (Fortran, C, C++) 
• It includes 

� point-to-point communication 
� collective communication 
� barrier synchronization 
� one-sided communication (MPI 2.0) 
� parallel I/O (MPI 2.0) 
� process creation (MPI 2.0) 

 
3.2.3 Shared variable 

o Similar to data-parallel model, in that it has single 
address space 

o Similar to message-passing model, in that it is 
multithreading and asynchronous 

o Data reside in a single, shared address space and does 
not have to be explicitly allocated 

o Communication is done implicitly through shared 
reads and writes of variables 

o Synchronization is explicit 
 
3.2.3.1 SGI Power C Model 

� extension to the sequential C language with 
compiler directives (pragmas) and library 
functions 

� supports shared-variable parallel programming 
� similar extended constructs are also provided 

for Fortran 
� it is structured and relatively simple 
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3.2.3.2 OpenMP: Directive-based SM parallelization 

� OpenMP is a standard shared memory 
programming interface(1997) 

� directives for Fortran77 and C/C++ 
� fork-join model resulting in global program 
� it includes: 

o parallel loops 
o parallel sections 
o parallel regions 
o shared and private data 
o synchronization primitives 

� barrier 
� critical region 

 
 
4. Topics in Parallel Computation 
 
 4.1 Types of parallelism: two extremes 
 

4.1.1 Data parallel 
• Each processor performs the same task on different data  
• Data mapping is critical 
• Programmed with HPF or message passing 
• Example – grid problems 

 
4.1.2 Task parallel 

• Each processor performs a different task   
• More difficult to balance load 
• Commonly programmed with message passing 
• Example – signal processing  

 
Most applications fall somewhere on the continuum 
between these two extremes 
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4.2 Programming Methodologies 
 

• Bulk of program in Fortran, C, or C++ 
• Data and/or tasks are split up onto different processors by: 

o Distributing the data onto local memory of CPU thus 
causing CPU to work on its local memory (MPPs, 
MPI). 

o Distribute work of each loop to different CPU’s 
(SMP, OpenMP). 

o Hybrid distribute data onto SMP box and then within 
the SMP distribute work of each loop to different 
CPUs within the box (SMP-Cluster, MPI&OpenMP). 
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4.3 Computation Domain decomposition and Load Balancing 
 

4.3.1 Domain decomposition 
• The computation domain is partitioned into several subdomains 

and then mapped onto processors of a parallel system. 
• In general, the number of subdomains equals to the number of 

processors in a parallel system. 
 

4.3.2 Load Balancing 
• The goal of partitioning is to distribute the computation load 

such that all processors can finish their computation at about 
the same time. 

• For homogeneous parallel systems, the computation load is 
distributed as evenly as possible in a parallel computer. 

• For heterogeneous parallel system, the computation load is 
distributed according to the computing power of each 
processor. 

 
4.3.3 Overlapping Subdomains and Non-Overlapping             
Subdomains: 
 
 4.3.3.1 Overlapping Subdomains 

• There is a common computation domain between two 
adjacent subdmains. 

 
 
     
      
        Subdomain 1 
 
                 
                                  Γ 2   

  
       
 
    Subdomain 2 
   
               
  1Γ        

  
• Mathematical formulations are applied on Γ 1 and Γ 2 
• Difficult to deal with irregular overlapping areas. 
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4.3.3.2 Non-overlapping Subdomains 

• There is only an interface between two adjacent 
subdomains 

 
 
 
         Subdomain 1 
 
                                         Γ  

 
 
       Subdomain 2 

 
• Mathematical formulations are applied on Γ . 
• Can handle irregular interfaces easily. 
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 4.3.4 Domain Decomposition for Numerical Analysis 
 

Overlapping Subdomains 
 
 

 
 
           Subdomain 1 
 
                                        Γ 1 

  
 
   Subdomain 2 
 
 Γ 2 

  
 
 

Domain Decomposition 
 
 

 
 
     Subdomain 1 
 

 2
1 fφ∇ =                  Γ 2  

 

                                2 1φ φ=  

              

                                             2 1φ φ
η η

∂ ∂
=

∂ ∂
     

                                

 

                   

                     ____ 

  
 
   Subdomain 2 
 
  Γ 1           2

2 fφ∇ =      
 

 1 2φ φ=  

 

1 2φ φ
η η

∂ ∂
=

∂ ∂
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Non-overlapping Subdomains 
 
 

 
 
 
             Subdomain 1 
                                            Γ  

 
 
 
          Subdomain 2 

 
 

Domain Splitting 
 
 

 
                   Subdomain 1 

                                    Γ
  
      2 ( )

1
n fφ∇ =  

 
                     

                     ( ) ( )
1

n ngφ =  

 
      ( 1) ( ) ( )

2 (1 )n n ng gθφ θ+ = + −  

 

                                       (D)   
 
                                                

 
    Subdomain 2 
 
 
       2 ( )

2
n fφ∇ =  

 
 

 
( ) ( )
2 1

n nφ φ
η η

∂ ∂
=

∂ ∂
 

 
 
 (N) 
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Interface Relaxation Process 
 

Iterative Scheme 1: 
1. Solve interior completely. 
2. Update the interface data. 
3. Repeat 1. and 2. until convergence on the interface. 

 
Iterative Scheme 2: 

1. One iteration for the interior mesh points of both subdomains. 
2. Update the interface mesh points. 
3. Continue 1. and 2. until convergence of all mesh points. 
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4.4 Numerical Solution Methods 
 
   4.4.1 Iterative Solution Methods 
 
      4.4.1.1 Parallel SOR (successive over-relaxation) 
 

4.4.1.1.1 Parallel SOR Iterative Algorithms for the Finite 
Difference Method. 
 
One dimensional example: 
 

 
2

2 1d
dx

φ
=  

 

 Difference equation: 
 
 φ j+1 – 2 φ j + φ j-1 = ∆x2              j=2,…,N-1 
 
 SOR Iterative Scheme: 
 

 φ j
(n+1/2)  = ( φ j+1

(n) + φ j-1
(n+1) - ∆x2)/2 

 
 φ j

(n+1) = α φ j
(n+1/2) + (1 -α ) φ j

(n) 
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Expand to Matrix Form: 

 
 
 
1 0  0 0 0 0 0 0   φ1           φ1/∆x2 
 
-1  2 -1 0 0 0 0 0   φ2   1 
 
0 -1 2 -1 0 0 0 0   φ3   1 
 
0 0 -1 2 -1 0 0 0   φ4   1 
         = ∆x2 
0 0 0 -1 2 -1 0 0   φ5   1 
          
0 0 0 0 -1 2 -1 0   φ6   1 
 
0 0 0 0 0 -1 2 -1   φ7   1 
 
0 0 0 0 0 0 0 1   φ8        φ8/∆x2 

  
 
 
 
 
 
 .. 
    

       1       2         3        4         5        6        7        8 
      
 
 
     subdomain 2 
  subdomain 1 
 .. 
    

     
        1       2         3        4         5        6        7        8 

      
   interface 
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Reorder Equations: 
 
 
 
1 0  0 0 0 0 0 0   φ1           φ1/∆x2 
 
-1  2 -1 0 0 0 0 0   φ2   1 
 
0 -1 2 -1 0 0 0 0   φ3   1 
 
0 0 -1 2 0 0 0 -1   φ4   1 
         = ∆x2 
0 0 0 0 2 -1 0 -1   φ6   1 
          
0 0 0 0 -1 2 -1 0   φ7   1 
 
0 0 0 0 0 0 1 0   φ8       φ8/∆x2 
 
0 0 0 -1 -1 0 0 2   φ5            1 

  
 
 
 Subdomain 1: φ2, φ3, φ4 

  
Interface: φ5 
 
Subdomain 2: φ6, φ7 
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Two Dimensional Example: 
 

2 2

2 2 1
x y
φ φ∂ ∂

+ =
∂ ∂

 

 

Difference Equation: 
 
c1(φi+1,j - 2φi,j + φi-1,j) + c2(φi,j+1 - 2φi,j – φi,j-1) = 1 
 
 
SOR Iterative Scheme: 
 
 
φi,j 

(n+1/2) = (c1/c3) (φi+1,j 
(n) + φi-1,j

(n+1)) + (c2/c3) (φi,j+1 
(n) + φi,j-1

(n+1) ) – 1/c3 
 
φi,j 

(n+1) = α φi,j 
(n+1/2) + (1-α )φi,j

(n) 

 
where: 
 
c1 = 1/∆x2,  c2 = 1/∆y2   and  c3 = 2/∆x2 + 2/∆y2 

 
      
     (n) 
    i,j+1 
 
 
 
 
 
 
 
             i-1, j                                 i,j                                       i+1,j      
 
              (n+1)                                                                          (n) 
 
 
 
                                                              i,j-1     (n+1)    
 



 36

 
           o            o            o             o             o  
 
 
           o       3   o      6    o        9   o             o 
 
 
           o       2   o       5   o        8   o             o 
  
                         
           o       1   o       4   o        7   o             o 
 
 
           o            o            o            o             o 
 
 
 

Reorder Equations: 
 
 
           o            o            o             o             o  
 
 
           o       3   o      6    o        9   o             o      Column type subdomains: 
 
                                                                              Subdomain 1: 1, 2, 3 
           o       2   o       5   o        8   o             o 
                                                                               Subdomain 2: 7, 8, 9 
                         
           o       1   o       4   o        7   o             o        Interface: 4, 5, 6 
 
 
           o            o            o            o             o 
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           o            o            o             o             o  
 
 
           o       3   o      6    o        9   o             o      Row type subdomains: 
 
                                                                              Subdomain 1: 1, 4, 7 
           o       2   o       5   o        8   o             o 
                                                                               Subdomain 2: 3, 6, 9 
                         
           o       1   o       4   o        7   o             o        Interface: 2, 5, 8 
 
 
           o            o            o            o             o 
 
 
           o            o            o             o             o  
                                                                              Block type subdomains: 
 
           o       3   o      6    o        9   o             o       Subdomain 1: 1 
 
                                                                              Subdomain 2: 7   
           o       2   o       5   o        8   o             o 
                                                                               Subdomain 3: 3 
                         
           o       1   o       4   o        7   o             o        Subdomain 4: 9 
 
                                                                               Interface: 2, 8, 4, 5, 6 
           o            o            o            o             o 
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4.4.1.1.2 Parallel SOR Iterative Algorithms for the Finite 
Element Method. 

 
 
The General Form of a Finite Element System: 
 
 k11 k1i 0  u1  f1 
 
 
 ki1 kii ki2  ui   = fi 
 
 
 0 k2i k22  u2  f2 
 

SOR Iterative Scheme: 

 k11u1
(n+1/2) = f1 – k1i ui

(n)       

 u1
(n+1) = αu1

 (n+1/2) + (1-α)u1
(n)        (1) 

 

 kiiui
(n+1/2) = fi –ki1u1

(n+1) – ki2u2
(n) 

 ui
(n+1) = αui

(n+1/2) + (1-α)ui
(n)    (2) 

 

 k22u2
(n+1/2) = f2 – k2iui

(n+1) 

 u2
(n+1) = αu2

(n+1/2) + (1-α)u2
(n)    (3) 
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Reorder Equations: 
 
 k11 0 k1i  u1  f1 
 
 
 0 k22 k2i  u2   = f2 
 
 
 ki1       ki2          kii  ui  fi 
 

Parallel SOR Iterative Scheme: 

 k11u1
(n+1/2) = f1 – k1i ui

(n)       

 u1
(n+1) = αu1

(n+1/2) + (1-α)u1
(n)        (4) 

 

 k22u2
(n+1/2) = f2 – k2iui

(n) 

 u2
(n+1) = αu2

(n+1/2) + (1-α)u2
(n)    (5) 

 

 kiiui
(n+1/2) = fi –ki1u1

(n+1) – ki2u2
(n+1) 

 ui
(n+1) = αui

(n+1/2) + (1-α)ui
(n)    (6)  
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4.4.1.2 Conjugate Gradient Method 
 
Conjugate Gradient (CG) Method is a popular iterative method for solving 
large systems of linear equations. CG is effective for systems of the form: 
   A x = b 
 
where x is an unknown vector, b is a known vector, and  A is a known, 
square, symmetric, positive-definite (or positive-indefinite) matrix. This 
system arises in many important settings, such as using finite difference and 
finite element methods for solving partial differential equations, structural 
analysis and circuit analysis. 
 

4.4.1.2.1 Conjugate Iterative Procedure 
 

  

(0) (0) (0)

( ) ( )
( )

( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( 1)
( 1)

( ) ( )

( 1) ( 1) ( 1) ( )

T
i i

i T
i i

i i i i

i i i i

T
i i

i T
i i

i i i i

d r b Ax
r r

d Ad

x x d

r r Ad

r r
r r

d r d

α

α

α

β

β

+

+

+ +
+

+ + +

= = −

=

= +

= −

=

= +
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4.4.1.3. Multigrid Method 
 
Many standard iterative methods (i.e. Jacobi, SOR, Gauss-Seidel) possess 
the smoothing property. This property makes these methods very effective at 
eliminating the high-frequency or oscillatory components of the error, while 
leaving the low-frequency or smooth components relatively unchanged. 
 
One way to improve a relaxation scheme, at least in its early stages, is to use 
a good initial guess. A known technique for obtaining an improved initial 
guess is to perform some preliminary iterations on a coarse grid and then use 
the resulting approximation as an initial guess on the original fine grid. 
 
Relaxation on a coarser grid is less expensive since there are fewer 
unknowns to be updated. Also, since the convergence factor behaves like 1-
O(h2), the coarser grid will have a marginally improved convergence rate. 
 
The linear system of equations considered is: 
 
    Ax =  b 
 

4.4.1.3.1 First Strategy 
 

1. Relax on Ax=b on a very coarse grid. 
2. … 
3. … 
4. … 
5. Relax on Ax=b on 4hΩ to obtain an initial guess for 2hΩ . 
6. Relax on Ax=b on 2hΩ to obtain an initial guess for hΩ . 
7. Relax on Ax=b on hΩ to obtain a final approximation to the 

solution. 
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4.4.1.3.2 Second Strategy (Coarse Grid Correction) 
 

1. Relax on Ax=b on hΩ to obtain an approximation hv . 
2. Compute the residual hr b Av= − . 
3. Relax on the residual equation Ae=r to obtain an approximation 

to the error e2h. 
4. Correct the approximation obtained on hΩ with the error 

estimate obtained on 
2 2: .h h h hv v eΩ ← +  

 
 Transformation between grids. 
 Interpolation (prolongation) 
 

1. Operator: 2
nh
nhI . 

2. Transferring the data from a coarse grid 2nhΩ  to a finer grid nhΩ . 
3. Linear interpolation can be used. 

 
Injection (restriction) 
 

1. Operator: 2
nh
nhI  

2. Moving data from a finer grid nhΩ  to a coarser grid 2nhΩ . 
3. Data on the same grid can be used directly. 
4. Full weighting can also be used. 

 
Coarse Grid Correction Scheme: ( , )h h hv CG v b← . 
Relax 1v  times on h h hA x b=  with initial guess hv . 
Compute 2 2 ( )h h h h h

hr I b A v= − . 
Solve 2 2 2h h hA e r=  on 2hΩ . 
Correct fine grid approximation: 2

2
h h h h

hv v I e← + . 
Relax 2v  times on h h hA x b=  on hΩ  with initial guess hv . 
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4.4.2 Direct Solution Method 
 

4.4.2.1 Gauss Elimination Method 
 

The Gauss Elimination Method is the most used direct solver 
for the linear system: 

  Ax = b 
where A is a known, square, positive definite and dense system. 
 
The general procedure for Gauss elimination is to factor the A 
matrix into an upper-triangular matrix: 
   Ux = y 
Then use back substitution to obtain the solution x. 
 
4.4.2.1.1.Gauss Elimination Procedure: 

   
The Gaussian elimination algorithm can be written in 
algorithmic form as shown: 
 
For 1,..., 1k n= −    For , 1,...,1k n n= −  
   For 1,...,i k n= +       k kx b=  

      ik
ik

kk

al
a

=        For 1,...,i k n= +  

      For 1,...,j k n= +         k k ki ix x a x= −  

         ij ij ik kja a l a= −       k
k

kk

xx
a

=  

      i i ik kb b l b= −  
 
(a) Forward Reduction  (b) Back Substitution 
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