Chapter 1: Parallel Computing at a Glance 1

Parallel Computing at a Glance

It is now clear that silicon based processor chips are reaching their physical limits in processing speed,
as they are constrained by the speed of electricity, light, and certain thermodynamic laws. A viable
solution to overcome this limitation is to connect multiple processors working in coordination with each
other to solve grand challenge problems. Hence, high performance computing requires the use of
Massively Parallel Processing (MPP) systems containing thousands of powerful CPUs. A dominant
representative computing system (hardware) built using MPP approach is C-DAC’s PARAM
supercomputer.

By the end of this century, all high performance systems will be parallel computer systems. High-end
super computers will be the Massively Parallel Processing (MPP) systems having thousands of proces-
sors interconnected. To perform well, these parallel systems require an operating system radically
different from current ones. Most researchers in the field of operating systems (including PARAS
microkernel designers!) have found that these new operating systems will have to be much smaller than
traditional ones to achieve the efficiency and flexibility needed. The solution appears to be to have a
new kind of OS that is effectively a compromise between having no OS at all and having a large
monolithic OS that does many things that are not needed. At the heart of this approach is a tiny
operating system core called a microkernel. Dominant representative operating systems built using
microkernel approach are Mach and C-DAC’s PARAS microkernel.

This chapter presents an overview of parallel computing in general and correlates all those concepts
to the PARAM and PARAS advented by the Centre for Development of Advanced Computing (C-
DAQC). It starts with the discussion on need of parallel systems for High Performance Computing and
Communication (HPCC). It also presents an overview of PARAM family of supercomputers with the
PARAS operating environment for respective representative systems. Thus, it brings out the four
important elements of computing: hardware architectures, system software, applications, and problem
solving environments.

1.1 History Parallel Computing

The history of parallel processing can be traced back to a tablet dated around 100 BC. Tablet had three
calculating positions capable of operating simultaneously. From this, we can infer that, these multiple
positions were aimed either at providing reliability or high speed computation through parallelism. Just
as we learned to fly, not by constructing machine that flap their wings like birds, but by applying
aerodynamic principles demonstrated by nature; we modeled parallel processing after these biological
species. The feasibility of parallel processing can be demonstrated by neurons in brain. Aggregate
speed with which complex calculations carried out by neurons is tremendously high, even though
individual response of neurons is too slow (in terms of milli seconds).
1

2 The Design of PARAS Microkernel

Eras of Computing

The most prominent two eras of computing are: sequential and parallel era. In the past decade, parallel
machines have become significant competitors to vector machines in the quest for high performance
computing. A century wide view of development of computing eras is shown in Figure 1.1. The comput-
ing era starts with a development in hardware architectures, followed by system software (particularly
in the area of compilers and operating systems), applications, and reaching its saturation point with its
growth in problem solving environments. Every element of computing undergoes three phases: R & D,
commercialization, and commodity.

Architecture .
Sequential o
Fra Compilers o
Applications o
___Problem Solving Environments
______ Architecture _
Parallel
k@ Compilers o
______ Applications _
______ PS.Es o
1940 50 60 70 80 90 2000 2030
Commercialization
Research and Commodity

Development

Figure 1.1: Two Eras of Computing

1.2 What is Parallel Processing ?

Processing of multiple tasks simultaneously on multiple processors is called parallel processing. The
parallel program consists of multiple active processes simultaneously solving a given problem. A given
task is divided into multiple subtasks using divide-and-conquer technique and each one of them are

2

karuna
Underline

Chapter 1: Parallel Computing at a Glance 3

processed on different CPUs. Programming on multiprocessor system using divide-and-conquer tech-
nique is called parallel programming.

1.3 Why Parallel Processing ?

Many applications today require more computing power than a traditional sequential computer can
offer. Parallel processing provides a cost-effective solution to this problem by increasing the number of
CPUs in a computer and by adding an efficient communication system between them. The work-load
can now be shared between different processors. This results in much higher computing power, perfor-
mance than could be achieved with traditional single processor system.

The development of parallel processing is being influenced by many factors. The prominent among
them include the following:

+ Computational requirements are ever increasing, both in the area of scientific and business comput-
ing. The technical computing problems, which require high speed computational power are related to
life sciences, aerospace, geographical information systems, mechanical design and analysis, etc.

« Sequential architectures reaching physical limitation as they are constrained by the speed of light and
thermodynamics laws. Speed with which sequential CPU’s can operate is reaching saturation point
(no more vertical growth), and hence an alternative way to get high computational speed is to
connect multiple CPU’s (opportunity for horizontal growth).

+ Hardware improvements in pipelining, superscalar, etc., are non-scalable and requires sophisticated
compiler technology. Developing such compiler technology is difficult task.

« Vector processing works well for certain kind of problems. It is suitable for only scientific problems
(involving lots of matrix operations). It is not useful to other areas such as database.

+ The technology of parallel processing is mature and can be exploited commercially; there is already
significant research and development (R & D) work on development tools and environment is achieved.

« Significant development in networking technology is paving a way for heterogeneous computing.

1.4 Hardware Architectures for Parallel Processing

The core elements of parallel processing are CPUs. Based on a number of instruction and data streams
that can be processed simultaneously, computer systems are classified into the following four catego-
ries:

1. Single Instruction Single Data (SISD)

2. Single Instruction Multiple Data (SIMD)

3. Multiple Instruction Single Data (MISD)

4. Multiple Instruction Multiple Data (MIMD)

Single Instruction Single Data (SISD)

A SISD computing system is a uniprocessor machine capable of executing a single instruction which
operates on a single data stream (see Figure 1.2). In SISD machine instructions are processed sequen-
tially and hence computers adopting this model are popularly called sequential computers. Most of
conventional computers are built using SISD model. All the instructions and data to be processed have
to be stored in the primary memory. The speed of processing element in SISD model is limited by the rate
at which computer can transfer information internally. Dominant representative SISD systems are IBM-
PC, Macintosh, Workstations, etc.

karuna
Highlight

4 The Design of PARAS Microkernel

Instructions

Figure 1.2: SISD Architecture

Single Instruction Multiple Data (SIMD)

A SIMD computing system is a multiprocessor machine capable of executing the same instruction on all
the CPUs, but operating on different data streams (see Figure 1.3). Machines based on SIMD model are
well suited for scientific computing since they involve lots on vector and matrix operations. For in-
stance, statements such as

L

can be passed to all the PEs (processing elements); and organized data elements of vector A and B into
multiple sets (N-sets for N PE systems); and trigger each PE to process one data set. Dominant repre-
sentative SIMD systems are CRAY’s vector processing machine, Thinking Machines’s cm*, etc.

Instruction
Stream

Data Input Processor Data output
stream A A T~ stream A

Processor Data output
B stream B

Data Input
stream B

Data Input | Processor Data output
stream C C stream C

Figure 1.3: SIMD Architecture

Multiple Instruction Single Data (MISD)
A MISD computing system is a multiprocessor machine capable of executing different instructions on

4

karuna
Highlight

Chapter 1: Parallel Computing at a Glance 5

different PEs, but all of them operating on the same data-set (see Figure 1.4). For instance, statements
such as

OO OO0 O
perform different operations on the same data set. Machines built using MISD model, are not useful in
most of the applications; a few machines are built, but none of them are available commercially. They
become more of an intellectual exercise than a practical configuration.

Instruction Instruction Instruction
Stream A Stream B Stream C
Processor
A Data
input

Processor
B

stream

Y

Processor
C

Figure 1.4: MISD architecture

Mulitiple Instruction Multiple Data (MIMD)

A MIMD computing system is a multiprocessor machine capable of executing multiple instructions on
multiple data sets (see Figure 1.5). Each PEs in MIMD model have separate instruction and data stream
and hence machines built using this model are well suited for any kind of applications. Unlike SIMD and
MISD machines, PEs in MIMD machines work asynchronously.

Instruction Instruction Instruction
Stream A Stream B Stream C
Data Input Processor | Data output
stream A A stream A
Data Input Processor Izztea afr?gaut
stream B B
Data Input Processor Data output
stream C C stream C

Figure 1.5: MIMD architecture

5

6 The Design of PARAS Microkernel

MIMD machines are broadly categorized into shared-memory MIMD and distributed-memory MIMD
machines based on how all the PEs are coupled to the main memory.

Shared Memory MIMD Machine

In shared memory MIMD model, all the PEs are connected to a single global memory; all the PEs have
access to this global memory (see Figure 1.6); also called as the tightly-coupled multiprocessor system.
The communication between PEs in this model, takes place through the shared memory; modification of
the data stored in global memory by one PE is visible to all other PEs. Dominant representative shared-
memory MIMD systems are Silicon Graphics machines, Sun’s SMP’s (Symmetric Multi-Processing),
BARC’s Anupam, etc.

Processor Processor Processor
A B C
M M M
E E E
M B M B M B
ou ou ou
R S R S R S
Y Y Y

Global Memory System

Figure 1.6: Shared-Memory MIMD Architecture

The following are the characteristics of shared-memory MIMD machines:
+ Manufacturability: Easy to build; a well established conventional operating systems can be easily
adapted.

+ Programmability: Easy to program and it does not involve much communication overhead during
the communication between the programs executing simultaneously.

+ Reliability: Failure of a memory component or any processing element affects the whole system.

« Extensibility and Scalability: Adding more PEs to the existing design (system) is very difficult since
it leads to memory contention.

Distributed Memory MIMD machine

In distributed memory MIMD model, all the PEs have their own local memory (see Figure 1.7); also
called as the loosely-coupled multiprocessor system. The communication between PEs in this model,
takes place through the interconnection network (IPC-inter-process communication channel). The net-
work connecting processing elements can be configured to tree, mesh, cube, etc.

Each and every PEs operate asynchronously and if communication/synchronization among tasks is
necessary, they can do so by communicating messages between them. Dominant representative distrib-
uted-memory MIMD systems are C-DAC’s PARAM, IBM’s SP/2, Intel’s Paragaon, etc.

6

Chapter 1: Parallel Computing at a Glance 7

1PC IPC
Channel Channel

Processor Processor Processor

A B C

M M M

E E E

M B M B M B

ou ou ou

R S R S R S

Y Y Y
Memory Memory Memory
system A system B system C

Figure 1.7: Distributed MIMD Architecture

The following are the characteristics of distributed memory MIMD machines:

+ Manufacturability: Easy to build, but it requires light-weight operating system which consumes little
system resources.

« Programmability: Slightly difficult when compared to shared-memory, but it is well suited for real-
time applications.

+ Reliability: Failure of any component will not affect the entire system; since any PE can be easily
isolated.

+ Extensibility and Scalability: Adding more PEs to the existing design (system) is much easier.

The shared-memory MIMD model, is easy to program but suffers from extensibility and scalability
and the distributed memory MIMD model difficult to program but it can easily be scaled and hence,
such systems are popularly called massively parallel processing (MPP) systems.

The PARAM series of parallel supercomputers adopts distributed memory multiprocessor technol-
ogy. All the processing elements are connected by a high speed network and communication among
them takes places through message passing interfaces supported on it.

1.5 Approaches to Parallel Programming

A sequential program is one which runs on a single processor and has a single line of control. To make
many processors collectively work on a single program, the program must be divided into smaller
independent chunks so that each processor can work on separate chunks of the problem. The program
decomposed in this way is a parallel program.

A wide variety of parallel programming approaches are available. The most prominent among them

8 The Design of PARAS Microkernel

supported on PARAM are the following:

« Data Parallelism
« Process Parallelism
« Farmer and Worker Model

All these three models are suitable for task level parallelism. In case of data parallelism, divide-and-
conquer technique is used to split data into multiple sets and each data set are processed on different
PEs by using the same instruction. This approach is highly suitable for processing on machines based
on SIMD model. In case of process parallelism, a given operation has multiple (but distinct) activities,
which can be processed on multiple processors. In case of farmer and worker model, job distribution
approach is used; one processor is configured as master and all other remaining PEs are designated as
slaves; master assigns job to slave PEs and they on completion informs the master which in turn
collects results. The above approaches can be utilized in different levels of parallelism (discussed later).

1.6 PARAM Supercomputers

The PARAM is an acronym for PARAllel Machine. The PARAM super computer is a distributed
memory, message passing parallel computer. The following are the PARAM family of supercomputers
designed by C-DAC:

Supercomputer Processor in Compute Engine Philosophy of Design
PARAM 8000 INMOS Transputer MPP

PARAM 8600 i860 MPP

PARAM 9000 Sun’s SPARC, Alpha, PowePC (MPP) MPP and Cluster
PARAM OpenFrame Sun's UltraSPARC Cluster

Table 1.1: PARAM Family

The PARAM 8000 is based on the transputers both as compute and service node. The PARAM 8600
is based on the i860 RISC processor as compute node and transputer as a service node. The PARAM
9000 is based on the SPARC series or POWER PC or Digital Alpha processors working both as a
compute and service nodes. Unlike PARAM 8000 and 8600, PARAM 9000 supports both MPP person-
ality and Cluster personality. All PARAM supercomputers work as a back-end compute engine to hosts
such as PC/AT, SUN workstations, Micro VAX machines, and U6000 machines etc. They provides
multi-user facility by partitioning back-end compute nodes into one or more logically disjoint fragments
and assigning them to users.

The PARAM 9000 is a multifaceted product. It supports both the cluster computing and MPP
computing. In both the personality, the basic hardware of PARAM 9000 remains the same. However,
they differ only in terms of operating environment and their configuration in terms of software. Archi-
tecture of PARAM 9000 machine will be discussed in later chapters.

1.7 PARAS Operating Environment

The PARAS is not just a microkernel, it is a complete parallel programming environment for C-DAC
PARAM called PARAS operating environment. At the lowest level, the parallel programming model

8

Chapter 1: Parallel Computing at a Glance 9

offered by the PARAS microkernel is one of kernel-level threads. PARAS offers constructs for tasks,
threads, memory management services, and synchronous/asynchronous communication between the
threads of different tasks or the same task.

PARAS - Parallel Programming Environment

PARAS is a comprehensive parallel programming environment that has been developed for PARAM
and similar class of message passing parallel computers. It comprises of the following:

OS kernel
host servers
compilers
run-time environment
parallel file system
on-line debugger and profiling tool
graphics and visualization support
networking interface
off-line parallel processing tools
program restructurers
libraries

L 2R 2R K R R R R 2R IR 2

*

PARAS is an advanced parallel programming environment that provides comprehensive support for
the complex task of developing and executing parallel programs for MIMD message passing machines.
PARAS is aimed at a host/backend hardware model and provides an environment that efficiently har-
nesses the power of parallel processing offered by distributed memory, message passing machines
such as PARAM. Written in C, PARAS is designed for easy portability across hardware platforms.

The various components of PARAS can be broadly classified into:
+ Program development environment
+ Program run-time environment
+ Utilities

PARAS Programming Model

The PARAS operating system environment provides a new programming model that is well suited for
developing parallel programs for high-performance computing on massively parallel systems. It pro-
vides the user with the model of a coherent computer system supporting virtually indeterminate number
of physical nodes in a reliable, network transparent fashion. The principle abstractions are tasks,
threads, messages, ports, and regions. These are enhanced by other abstractions such as port groups,
multicast, multimode services. The PARAS program development environment includes the following.

1. PARAS Microkernel

2. COncurrent Runtime Environment (CORE)

3. POSIX threads Interface

4. Popular Message Passing interfaces such as
+ MPI (Message Passing Interface)
+ PVM (Parallel Virtual Machine)

5. Parallelizing Compilers

6. Tools and Debuggers for Parallel Programming

7. Load balancing and distribution tools

10 The Design of PARAS Microkernel

The detailed discussion on various tools available on PARAS is beyond the scope of this and hence, it
is omitted.

The PARAS microkernel is one of a prime component in the PARAS operating environment. It is
highly optimized for high performance computing. It is available on all PARAM family of supercomputers.
It allows seamless migration of application from early systems to latest systems. More detailed discus-
sion on the PARAS microkernel can be found in later chapters.

1.8 Levels of Parallelism

Levels of parallelism decided based on the lumps of code (grain size) that can be a potential candidate
for parallelism. Table 1.2 lists categories of code granularity for parallelism.

GrainSize Code Item Comments/parallelized by
Large Program-Separate heavyweight process Programmer

Medium Standard One Page Function Programmer

Fine Loop/Instruction block Parallelizing compiler
Very fine Instruction Processor

Table 1.2: Levels of Parallelism

All of forgoing approaches have a common goal to boost processor efficiency by hiding latency. To
conceal latency through, there must be another thread ready to run whenever a lengthy operation
occurs. The idea is to execute concurrently two or more single-threaded application, such as compiling,
text formatting, database searching, and device simulation.

Parallelism in an application can be detected at several level. They are

+ Large-grain (or task-level)

+ Medium-grain (or control-level)

+ Fine-grain (data-level)

« Very-fine grain (multiple instruction issue)

The different levels of parallelism is depicted in Figure 1.8.

Among the four levels of parallelism, the PARAM supports medium and large grain parallelism
explicitly. However instruction level of parallelism is supported by the processor used in building
compute engine of the PARAM. For instance, the compute engine in PARAM 8600 is based on i860
processor having capability to execute multiple instructions concurrently.

A programmer can use PARAS programming environment for the parallelization of an application. A
basic thread level and task level programming on PARAM is supported by the PARAS microkernel in
the form of primitive services. Much sophisticated programming environment is built using the
microkernel services in the form of subsystem. Some of the prominent and powerful subsystems built
are CORE, MPI, POSIX threads, and port group communication systems.

10

Chapter 1: Parallel Computing at a Glance 11

messages messages

- Large grain
: Task i > (task level)

funcl () func?2 () func3 ()

{ t { edium grain
(control level)

} } }

all]l=.. al2] . Fine grain
b[l]l=.. b[2]=.. (data level)

Very fine grain
(multiple issue)

Figure 1.8: Detecting Parallelism

Thread Level Programming

Threads are an emerging model for expressing concurrency on multiprocessor and multicomputer sys-
tems. In multiprocessors, threads are primarily used to simultaneously utilize all the available proces-
sors, whereas in uniprocessor or multicomputer system, threads are used to utilize system resources
effectively by exploiting the asynchronous behavior (opportunity for computation and communication
overlap) of threads. More details on threads can be found in the Process Management chapter.

11

12 The Design of PARAS Microkernel

Task Level Programming

PARAM as a MIMD distributed memory machine, offers a wide variety of interfaces for task level
parallelism. They include CORE (COncurrent Runtime Environment), MPI (Message Passing Interface),
PVM (Parallel Virtual Machine). CORE is a custom built interface whereas MPI is the standard interface,
which is available on most of the modern parallel supercomputers. The various primitives offered by
them include task creation, deletion, control, and communication. They offer both the synchronous and
asynchronous mode of communication.

1.9 Laws of Caution

For a given n processors, the user expects speed to be increased by n times. It is an ideal situation,
which never happens because of communication overhead. Here are a few laws of caution.

1. Speed of computation is proportional to the square root of system cost; they never increase linearly
as shown in Figure 1.9.

CA

Cost

(cost = speed>)

» S

Speed
Figure 1.9: Cost vs. Speed tradeoff in Parallel Systems

2. Speedup by a parallel computer increases as the logarithm of the number of processors; i.e., [LTTTTTT]

IIIIIIIIIIIIIIIIIIIIIIIIIIItisshowninFigurel.lO.
SA
(o8
=
3 D
2 S
A QO
» P
Processors

Figure 1.10: Processors vs. Speedup tradeoff

3. Very fast development in parallel processing and related area have blurred concept boundaries,
causing lot of terminological confusion.

Chapter 1: Parallel Computing at a Glance 13

4. Even well-defined distinctions like shared memory and distributed memory are merging due to new
advances in technology.

5. Good environments for developments and debugging are yet to emerge.

6. There is no strict delimiters for contributors to the area of parallel processing. Hence, computer
architects, OS designers, language designers, computer network designers, all have a role to play.

It is hard to imagine a field that changes as rapidly as computing. Latest developments in the area of

software have blurred the concept of programming on shared memory and distributed memory multipro-

cessor systems. Because of lack of taxonomy and terminologies, computer science can be called as

immature science.

13

